$$
\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}^{+} .\left[\mathrm{Os}_{6}(\mathrm{CO})_{18} \mathrm{H}\right]^{-}
$$

$91.8(2)^{\circ}$ and $0.978(3) \AA$ in $\left[\mathrm{FeCo}_{3}\left(\mu_{3}-\mathrm{H}\right)(\mathrm{CO})_{9}-\right.$ $\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{3}$] (Teller, Wilson, McMullan, Koetzle \& Bau, 1978), $93.9(3)^{\circ}$ and $0.907(6) \AA$ in $\left[\mathrm{Ni}_{4}\left(\mu_{3}-\mathrm{H}\right)_{3}{ }^{-}\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$] (Koetzle, Müller, Tipton, Hart \& Bau, $1979)$ and 95.7° and $0.957(6) \AA$ for $\left[\mathrm{Rh}_{4}\left(\mu_{3}-\mathrm{H}\right)_{4}^{-}\right.$ $\left(\eta\right.$ - $\left.\left.{ }_{5} \mathrm{Me}_{5}\right)\right]^{2+}$ (Ricci, Koetzle, Goodfellow, Espinet \& Maitlis, 1974). Therefore, the hydride lies closer to the trimetal plane here than in the other examples although the difference is not significant in the case of the Ni_{4} cluster. In $\left[\mathrm{Os}_{6}\left(\mu_{3}-\mathrm{H}\right)(\mathrm{CO})_{18}\right]^{-}$the $\mathrm{Os}-\mathrm{Os}$ distances in the bridged triangle (mean $2.968 \AA$) are notably longer than the other Os-Os lengths which may be separated into two classes, distinguishable owing to the near- $C_{3 v}$ symmetry of the cluster: those in the $\mathrm{Os}(1) \mathrm{Os}(2) \mathrm{Os}(3)$ triangle (mean $2.881 \AA$), and those connecting the two triangles (mean $2.863 \AA$). These values are in good agreement with those obtained at 200 K by X-ray diffraction in this work ($2.963,2.881$ and $2.868 \AA$) and those reported for the $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~N}^{+}$salt by McPartlin et al. (1976) ($2.973,2.872$ and $2.863 \AA$ respectively). These distances reflect the distortions in the Os_{6} framework that occur on protonation of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$ [cf. mean $\mathrm{Os}-\mathrm{Os}$ in the approximate D_{3} symmetry dianion $2.863 \AA$ (McPartlin et al., 1976)]. These distortions and those in the surrounding carbonyl coordination sphere (note large $\mathrm{Os}-\mathrm{Os}-\mathrm{C}$ angles involving carbonyls cis to the hydride) were the basis for the assignment of the μ_{3} site for the hydride in $\left[\mathrm{Os}_{6}\left(\mu_{3}-\mathrm{H}\right)(\mathrm{CO})_{18}\right]^{-}$(McPartlin et al., 1976; Orpen,
1980). That assignment is fully confirmed by the present study.

We thank Mr J. Henriques for technical assistance, and Dr E. Abola for careful reading of the manuscript.

References

Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1976). J. Chem. Soc. Chem. Commun. pp. 302-303.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Koester, L. (1977). Neutron Physics. Springer Tracts in Modern Physics, Vol. 80, edited by G. Höhler. Berlin: Springer.
Koetzle, T. F., Müller, J., Tipton, D. L., Hart, D. W. \& Bau, R. (1979). J. Am. Chem. Soc. 101, 5631-5637.

Larson, A. C. (1967). Acta Cryst. 23, 664-665.
McMullan, R. K. \& Koetzle, T. F. (1979). Unpublished results.
McPartlin, M., Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1976). J. Chem. Soc. Chem. Commun. pp. 883-885.

Orpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509-2516.
Orpen, A. G. \& Koetzle, T. F. (1984). Acta Cryst. B40, 606-612.
Ricci, J. S., Koetzle, T. F., Goodfellow, R. J., Espinet, P. \& Martlis, P. M. (1984). Inorg. Chem. 23, 1828-1831.
Rogers, D. (1981). Acta Cryst. A 37, 734-741.
Sheldrick, G. M. (1985). SHELXTL Users Manual, Revision $5 \cdot 1$. Nicolet XRD Corp., Madison, WI, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Teller, R. G. \& Bau, R. (1981). Struct. Bonding (Berlin), 44, 1-81.
Teller, R. G., Wilson, R. D., McMullan, R. K., Koetzle, T. F. \& BAU, R. (1978). J. Am. Chem. Soc. 100, 3071-3076.

Synthesis and Molecular Structure of Tetrabutylammonium Tetrachloro(pyrimidine-2-thiolato)technetate(IV)

By Christopher D. Bush, Thomas A. Hamor,* Wasif Hussain, Christopher J. Jones, Jon A. McCleverty and Anne S. Rothin
Department of Chemistry, University of Birmingham, PO Box 363, Birmingham B15 2TT, England

(Received 24 February 1987; accepted 18 May 1987)

Abstract

N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]\left[\mathrm{Tc}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}\right) \mathrm{Cl}_{4}\right], \quad M_{r}=594 \cdot 3\), triclinic, $P \overline{1}, \quad a=11 \cdot 182$ (6),$\quad b=11.505$ (4), $\quad c=$ 12.235 (4) $\AA, \quad \alpha=64.53$ (4),$\quad \beta=76.81$ (3),$\quad \gamma=$ 84.10 (5) ${ }^{\circ}, V=1383.5 \AA^{3}, Z=2, D_{x}=1.427 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=0.97 \mathrm{~mm}^{-1}, \quad F(000)=$ $614, T=297 \mathrm{~K}, R=0.058$ for 3670 unique observed reflections. The coordination about Tc is distorted octahedral with $\mathrm{Tc}-\mathrm{N} 2.087$ (6), $\mathrm{Tc}-\mathrm{S} 2.429$ (2) and $\mathrm{Tc}-\mathrm{Cl} 2.346$ (2)-2.396 (2) \AA. The $\mathrm{N}-\mathrm{Tc}-\mathrm{S}$ angle is

[^0]0108-2701/87/112088-04\$01.50
$67 \cdot 1(2)^{\circ}$, constituting the major angular distortion from ideal octahedral.

Introduction. The γ-emitting radionuclide ${ }^{99 m} \mathrm{Tc}$ is widely used as an imaging agent in diagnostic nuclear medicine. The biodistribution of ${ }^{99 m} \mathrm{Tc}$ following administration to the patient may be controlled by incorporating it in a coordination or organometallic compound. Both the nature of the ligand and the Tc oxidation state are important in determining the physical properties of the product complex and thus its
© 1987 International Union of Crystallography
biodistribution. The demonstration that lipophilic cationic complexes of ${ }^{99 m} \mathrm{Tc}$ can localize in the myocardium has stimulated interest in cationic compounds (Deutsch, Libson \& Jurisson, 1985; Jones, Abrams, Davison, Brodack, Toothaker, Adelstein \& Kassis, 1984).

In an attempt to prepare and characterize examples of such complexes we have been investigating the reactions of $\left[\mathrm{TcOCl}_{4}\right]^{-}$with bidentate ligands containing a neutral nitrogen donor atom and an ionizable thiol group. In this way we hoped to prepare compounds of formula $\left[\mathrm{TcO} L_{2}\right]^{+}$containing the $\left\{\mathrm{TcON}_{2} \mathrm{~S}_{2}\right\}^{+}$coordination shell. The reaction between $\left[\mathrm{TcOCl}_{4}\right]$ - and 2-mercaptopyrimidine afforded a brown crystalline product in low yield. Infra-red spectral data indicated the absence of a band attributable to $\mathrm{Tc}=\mathrm{O}$ but did indicate the presence of the thiolate ligand. A single-crystal X-ray diffraction study was undertaken to fully characterize this compound.

Experimental. Reagents were used as received and solvents were dried by standard techniques before use. $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}\left[99 \mathrm{TcOCl}_{4}\right]^{-}$was prepared according to a previously described method but using $\mathrm{Bu}_{4} \mathrm{NBr}$ in place of $\mathrm{Bu}_{4} \mathrm{NCl}$ (Davison, Orvig, Trop, Sohn, DePamphilis \& Jones, 1980). Infra-red spectra were recorded on a PE 297 instrument.

$\mathrm{Bu}_{4}^{n} \mathrm{~N}\left[\mathrm{TcCl}_{4}\left(\mathrm{SC}_{4} \mathrm{~N}_{2} \mathrm{H}_{3}\right)\right]$

To a solution of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}\left[\mathrm{TcOCl}_{4}\right]^{-} \quad(100 \mathrm{mg}$, 0.2 mmol) in dry methanol (15 ml) was added 2 mercaptopyrimidine ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$). A brown solution formed and the mixture was stirred at room temperature for 18 h . After this time the mixture was filtered to remove a black solid and the filtrate volume reduced by evaporation (to $c a 10 \mathrm{ml}$). Diethyl ether (6 ml) was then added and the mixture cooled to $273-278 \mathrm{~K}$ for 72 h . The red-brown solid which separated was recrystallized from dichloromethane/ diethyl ether mixtures ($16 \mathrm{mg}, 13 \%$). A crystal of size $0.3 \times 0.4 \times 0.4 \mathrm{~mm}$ was selected from this material for X-ray analysis.

Measurements were made on an Enraf-Nonius CAD-4 diffractometer with Mo $K \alpha$ radiation. Lattice parameters were determined from the setting angles of 25 reflections ($\theta 12-18^{\circ}$). Intensity data were measured with $\omega-2 \theta$ scans in the range $2<\theta<24^{\circ}$, index range $h \pm 12, k-11$ to $13, l 0$ to 13 . Two standard reflections measured every 2 h showed no significant variation over the period of data collection. 5451 reflections were scanned of which 4319 were unique, $R_{\text {int }}=0.019$, and 3670 were considered observed $[F>5 \sigma(F)]$ and were used in the analysis. No absorption correction was applied. The structure was solved by Patterson and Fourier methods. The H atoms of the pyrimidine ring were located in a difference Fourier map and included in the refinement at fixed positions. The H atoms of the

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ with e.s.d.'s in parentheses and isotropic temperature factors

		$\left(\AA^{2} \times 10\right.$		
$U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}+2 U_{23} \cos \alpha+2 U_{13} \cos \beta+2 U_{12} \cos \gamma\right)$.				
	x	y	z	$U_{\text {eq }} / U$
Tc	1904 (1)	1871 (1)	1954 (1)	33
$\mathrm{Cl}(1)$	2998 (2)	241 (2)	3359 (2)	38
$\mathrm{Cl}(2)$	727 (2)	3542 (2)	721 (2)	38
$\mathrm{Cl}(3)$	534 (1)	302 (2)	2128 (2)	31
$\mathrm{Cl}(4)$	3365 (2)	1901 (2)	229 (2)	40
S	2763 (2)	3463 (2)	2364 (2)	42
N(1)	825 (5)	2171 (6)	3445 (6)	35
C(2)	1421 (7)	3141 (7)	3451 (7)	36
N(3)	1020 (7)	3740 (7)	4188 (7)	47
C(4)	-72 (9)	3323 (9)	4981 (9)	52
C(5)	-743 (8)	2358 (9)	5035 (8)	50
C(6)	-281 (8)	1768 (8)	4239 (8)	45
N(11)	7328 (5)	2279 (6)	-83 (5)	36 (1)*
C(11)	6708 (7)	1002 (7)	815 (7)	43 (2)*
C(12)	7099 (8)	338 (8)	2061 (8)	53 (2)*
C(13)	6440 (9)	-879 (9)	2835 (9)	64 (3)*
C(14)	6686 (11)	-1509 (12)	4112 (11)	91 (3)*
C(15)	8680 (7)	1993 (7)	-529 (7)	42 (2)*
C(16)	9416 (7)	3135 (7)	-1528 (7)	42 (2)*
C(17)	10736 (7)	2720 (8)	-1865 (8)	50 (2)*
C(18)	11580 (9)	3847 (9)	-2747 (9)	66 (3)*
C(19)	6664 (7)	2926 (7)	-1130 (7)	39 (2)*
C(20)	6695 (8)	2235 (8)	-1965 (8)	54 (2)*
C(21)	5940 (9)	2987 (9)	-2953 (9)	59 (2)*
C(22)	6443 (9)	4271 (10)	-3868 (9)	71 (3)*
C(23)	7314 (7)	3187 (7)	552 (7)	41 (2)*
C(24)	6051 (8)	3496 (9)	1119 (8)	57 (2)*
C(25)	6185 (9)	4213 (9)	1914 (9)	67 (3)*
C (26)	6602 (12)	3371 (13)	3089 (12)	103 (4)*
* Refined isotropic temperature factor.				

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the complex anion

$\mathrm{Tc}-\mathrm{Cl}(1)$	2.384 (2)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.360 (10)
$\mathrm{Tc}-\mathrm{Cl}(2)$	2.366 (2)	$\mathrm{C}(2)-\mathrm{N}(3)$	1.333 (10)
$\mathrm{Tc}-\mathrm{Cl}(3)$	2.396 (2)	$\mathrm{N}(3)-\mathrm{C}(4)$	1.357 (11)
$\mathrm{Tc}-\mathrm{Cl}(4)$	2.346 (2)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.373 (13)
$\mathrm{Tc}-\mathrm{N}(1)$	2.087 (6)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.393 (12)
Tc-S	2.429 (2)	$\mathrm{C}(6)-\mathrm{N}(1)$	1.368 (10)
S-C(2)	1.713 (8)		
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{Cl}(2)$	174.4 (1)	$\mathrm{Cl}(4)-\mathrm{Tc}-\mathrm{S}$	100.6 (1)
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{Cl}(3)$	91.0 (1)	$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{S}$	67.1 (2)
$\mathrm{Cl}(1)-\mathrm{Tc} \mathrm{Cl}(4)$	92.3 (1)	$\mathrm{Tc} \cdot \mathrm{S}-\mathrm{C}(2)$	80.5 (3)
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{N}(1)$	88.8 (2)	$\mathrm{Tc}-\mathrm{N}(1)-\mathrm{C}(2)$	102.9 (5)
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{S}$	88.9 (1)	$\mathrm{Tc}-\mathrm{N}(1)-\mathrm{C}(6)$	137.8 (6)
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{Cl}(3)$	$90 \cdot 2$ (1)	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	118.9 (7)
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{Cl}(4)$	92.8 (1)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	125.1 (7)
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{N}(1)$	85.8 (2)	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	115.5 (7)
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{S}$	88.1 (1)	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	123.5 (8)
$\mathrm{Cl}(3)-\mathrm{Tc}-\mathrm{Cl}(4)$	98.8 (1)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.6 (8)
$\mathrm{Cl}(3)-\mathrm{Tc}-\mathrm{N}(1)$	93.4 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	118.4 (8)
$\mathrm{Cl}(3)-\mathrm{Tc}-\mathrm{S}$	$160 \cdot 6$ (1)	S-C(2)-N(1)	109.1 (6)
$\mathrm{Cl}(4)-\mathrm{Tc}-\mathrm{N}(1)$	167.7 (2)	$\mathrm{S}-\mathrm{C}(2)-\mathrm{N}(3)$	125.7 (6)

cation were placed in calculated positions 'riding' on their bonded C atoms. Coordinates were refined for the non- H atoms using full-matrix least squares on F values with weights $w=1 / \sigma^{2}(F)$ from counting statistics. The atoms of the complex anion were assigned anisotropic thermal parameters; those of the cation were refined isotropically. The H atoms of the anion and those of the cation were each assigned one overall isotropic temperature factor (0.07 and $0.08 \AA^{2}$ respectively). The refinement was terminated when all shift/e.s.d. ratios were less than 0.01 and $R=0.058, w R=0.083$ for the 3670 observed reflections. The residual electron density

Fig. 1. Stereoscopic view of the anion and cation as they occur in the crystal, showing the atom-numbering scheme. The H atoms of the cation have been omitted.
in a final difference map was within $\pm 1 \cdot 15$ e \AA^{-3} with all main peaks close to Cl atoms. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974); computations were carried out with SHELX (Sheldrick, 1978) and PLUTO78 (Motherwell \& Clegg, 1978).

Discussion. The product from the reaction between $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}\left[\mathrm{TcOCl}_{4}\right]^{-}$and 2-mercaptopyrimidine was expected to be $\left[\mathrm{TcO}\left(\mathrm{SC}_{4} \mathrm{~N}_{2} \mathrm{H}_{3}\right)_{2}\right]+$ in which the four chloride ligands had been displaced by two thiolate ligands. However, the X-ray diffraction study revealed that the product isolated was the $\mathrm{Tc}^{\mathrm{IV}}$ complex $\left[\mathrm{Bu}_{4}^{n} \mathrm{~N}\right]+\left[\mathrm{TcCl}_{4}\left(\mathrm{SC}_{4} \mathrm{~N}_{2} \mathrm{H}_{3}\right)\right]^{-}$, not a complex of Tc^{V}. Atomic coordinates are given in Table 1* and bond lengths and angles for the complex anion are in Table 2. The structure of the complex is illustrated in Fig. 1.

Formation of such a $\mathrm{Tc}^{\text {IV }}$ complex from a Tc^{\vee} precursor by one-electron reduction and oxygen abstraction is unusual, although such a reduction has been reported to occur in the reaction between $\left[\mathrm{TcOCl}_{4}\right]^{-}$ and a dithiocarbamate ligand (duPreez, Gerber \& Knoesen, 1985). In this case a neutral $\mathrm{Tc}^{\text {IV }}$ tetrakisdithiocarbamate complex was formed in 87% yield. A more likely explanation for the formation of the title compound would be the presence of $\left[\mathrm{TcCl}_{6}\right]^{2-}$ as an impurity in the $\left[\mathrm{TcOCl}_{4}\right]^{-}$used. Direct chloride substitution by the thiolate ligand would then lead to the observed $\mathrm{Tc}^{\mathrm{IV}}$ complex. A Tc analysis of the [$\mathrm{Bu}_{4}^{n} \mathrm{~N}$][TcOCl_{4}] used was carried out by scintillation methods. The values of 17.9 and 18.5% obtained are consistent with the presence of $c a 20 \%\left[\mathrm{Bu}_{4}^{n} \mathrm{~N}\right]_{2}\left[\mathrm{TcCl}_{6}\right]$ in the $\left[\mathrm{Bu}_{4}^{n} \mathrm{~N}\right]\left[\mathrm{TcOCl}_{4}\right]$ precursor. This would in turn be in accord with the low yield of crystalline product obtained from the reaction.

The essentially octahedral coordination about Tc is distorted by the small $\mathrm{N}-\mathrm{Tc}-\mathrm{S}$ angle (see Table 2) of the four-membered chelate ring. The $\mathrm{Cl}-\mathrm{Tc}-\mathrm{Cl}$ angle trans to this angle is enlarged to $98.8(1)^{\circ}$. Despite the angular distortions, the atoms $\mathrm{Tc}, \mathrm{Cl}(3), \mathrm{Cl}(4), \mathrm{S}, \mathrm{N}(1)$, forming the basal plane of the octahedron, are coplanar

[^1]to within ± 0.01 (1) \AA. The four-membered ring deviates by up to ± 0.04 (1) \AA from planarity. Formation of the chelate ring imposes considerable angular strain at $\mathrm{N}(1)$ and $\mathrm{C}(2)$, the exocyclic angles being greater by 34.9° at $\mathrm{N}(1)$ and by 16.6° at $\mathrm{C}(2)$, than the corresponding ring angle. The pyrimidine ring is planar to within the limits of experimental error. Excluding the two axial Cl atoms, $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$, the remaining ten non-H atoms of the anion are coplanar to within $\pm 0 \cdot 10$ (1) \AA.
In the structure of the analogous tetrachloro(salicylaldehydato)technetate(IV) in crystals of the tetraphenylphosphonium salt (Mazzi, Roncari, Bandoli \& Clemente, 1982) the octahedral coordination geometry about Tc is less distorted. Here chelation involves a six-membered ring and the maximum deviation of an angle at Tc from 90 or 180° is only $6 \cdot 5^{\circ}$. The $\mathrm{Tc}-\mathrm{Cl}$ bond lengths in this anion range from 2.31 to $2.36 \AA$, mean $2.33 \AA$, somewhat shorter than the mean $\mathrm{Tc}-\mathrm{Cl}$ length of $2.373 \AA$ in the title compound. This is in accord with the more basic S and N donor atoms of the mercaptopyrimidine producing higher electron density on Tc than the more electronegative O donor atoms of the salicylaldehyde ligand.

The tetrabutylammonium counter ion has two of the butylammonium chains in the extended antiperiplanarantiperiplanar conformation, with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles all within $7(1)^{\circ}$ of 180°. The other two butylammonium chains have anti-periplanar-synclinal conformations [torsion angles 178 (1), 66 (1) and $\left.170(1),-72(1)^{\circ}\right]$. Bond lengths in the cation are normal, C-N $1.50(1)-1.54$ (1) \AA and C-C 1.49 (1)-1.56 (1) \AA.

This work was supported by the SERC and Amersham International plc.

References

Davison, A., Orvig, C., Trop, H. S., Sohn, M., DePamphilis, B. V. \& Jones, A. G. (1980). Inorg. Chem. 19, 1988-1992.

Deutsch, E., Libson, K. \& Jurrisson, S. (1985). Prog. Inorg. Chem. 30, 75-139.
duPreez, J. G. H., Gerber, T. I. A. \& Knoesen, O. (1985). Inorg. Chim. Acta, 109, L17-19.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Jones, A. G., Abrams, M. J., Davison, A., Brodack, J. W., Toothaker, A. K., Adelstein, S. J. \& Kassis, A. I. (1984). Int. J. Nucl. Med. Biol. 11, 225-234.
Mazzi, U., Roncari, E., Bandoli, G. \& Clemente, D. A. (1982). Transition Met. Chem. 7, 163-166.

Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1978). SHELX. Program for crystal structure determination. Univ. of Cambridge.

Acta Cryst. (1987). C43, 2091-2093

Structure of Tetraphenylphosphonium (Bipyridine)tetrachloromolybdate(III) [PPh_{4} IIMoCl ${ }_{4}(\mathrm{bpy})$]

By Raymond L. Richards and Caroline Shortman
AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9RQ, England
and David C. Povey and Gallienus W. Smith
Department of Chemistry, University of Surrey, Guildford GU2 5XH, England

(Received 17 November 1986; accepted 7 July 1987)

Abstract

P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]\left[\mathrm{MoCl}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right], M_{r}=733.34\), triclinic, $\quad P \overline{1}, \quad a=9.211$ (1),$\quad b=12.840$ (1),$\quad c=$ 14.441 (2) $\AA, \quad \alpha=104.31$ (1), $\quad \beta=101.77$ (2), $\quad \gamma=$ $90.91(1)^{\circ}, \quad V=1616 \cdot 1(8) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.51 \mathrm{Mg} \mathrm{m}^{-3}, \quad D_{m} \quad$ not measured, $\quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71069 \AA, \mu=8.04 \mathrm{~cm}^{-1}, F(000)=742, T=272 \mathrm{~K}$, $R=0.035$ for 4891 reflexions with $I \geq 3 \sigma(I)$. Reaction of $\left[\mathrm{MoCl}_{4}(\mathrm{bpy})\right]$ with $\mathrm{Li}_{2} \mathrm{~S}_{2}$ in tetrahydrofuran gives $\mathrm{Li}\left[\mathrm{MoCl}_{4}(\right.$ bpy $\left.)\right]$. Metathesis using $\mathrm{PPh}_{4} \mathrm{Br}$ forms the deep purple title complex, which has been structurally characterized by X-ray crystallography. The Mo atom is surrounded by four Cl ions and a bipyridine ligand in a distorted octahedral arrangement. Average $\mathrm{Mo}-\mathrm{Cl}$ distance of $2.43 \AA$ is consistent with values found in other Mo ${ }^{\text {III }}$ complexes. Two $\mathrm{C}-\mathrm{C}$ distances of 3.37 and $3.38 \AA$ occur between bipyridine ligands across the centre of symmetry.

Introduction. The EXAFS data on nitrogenase and other molybdoenzymes (Cramer, Hodgson, Gillum \& Mortenson, 1978; Cramer et al., 1978) has stimulated intense research interest in the preparation of Mo-S complexes. We have studied the reaction of molydenum complexes with various sulfur-containing reagents (Povey \& Richards, 1984; Povey, Richards \& Shortman, 1986) and in continuation of this work lithium sulfide was investigated as a potential source of sulfur ligation.

With the aim of metathesising chloride for sulfide, the complex $\left[\mathrm{MoCl}_{4}(\right.$ bpy $\left.)\right]$ was treated with $\mathrm{Li}_{2} \mathrm{~S}_{2}$, but reduction of the Mo centre occurred with the elimination of S to yield the red moisture-sensitive complex $\mathrm{Li}\left[\mathrm{MoCl}_{4}(\right.$ bpy $\left.)\right]$. Subsequent treatment by $\mathrm{PPh}_{4} \mathrm{Br}$ in methanol converted the lithium complex to the deep

0108-2701/87/112091-03\$01.50
purple tetraphenylphosphonium analogue which is the subject of this structural investigation.

Experimental. Accurate unit-cell parameters were measured on a CAD-4 diffractometer using 25 accurately centred reflexions $\left(21 \leq \theta \leq 23^{\circ}\right)$ from a crystal of dimensions $0.3 \times 0.02 \times 0.15 \mathrm{~mm}$. A full hemisphere of reciprocal space was measured ($0 \leq h \leq 11,-15 \leq$ $k \leq 15,-17 \leq l \leq 17$), θ limit $26^{\circ}, \omega / 2 \theta$ scan, scan speed $3.3^{\circ} \mathrm{min}^{-1}, 002$ reflexion monitored hourly. Variation of its intensity was insignificant during the data-collection period and after data reduction from a total of 6343 unique reflexions 4891 had $I \geq 3 \sigma(I)$. Intensity statistics indicated a centrosymmetric distribution and space group $P \overline{1}$ was assumed.
The solution to the structure was not straightforward. Routine application of the directmethods program MULTAN (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) failed to produce a refinable structure in the first six solutions although all the heavy-atom peaks satisfied the vector distribution in the Patterson map. Reducing the space group to $P 1, M U L T A N$ then produced the correct structure from which the centre of symmetry was deduced. The correct solution in space group $P \overline{1}$ proved to be the eighth solution.

From an electron density map phased upon Mo, four Cl and P the coordinates of the four phenyl groups were obtained and refinement of structure amplitudes converged at $R=0.105$ with H atoms at calculated positions ($d_{\mathrm{H}}=1.0 \AA$). An absorption correction by DIFABS (Waiker \& Stuart, 1983) reduced R to 0.076 with minimum and maximum corrections 0.661 and $1-215$ respectively. Full-matrix anisotropic refinement © 1987 International Union of Crystallography

[^0]: *To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and angles for the cation have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44056 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

